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Diffusion coefficients of two-dimensional viral DNA walks

Tai-Hsin Hsu and Su-Long Nyeo
Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, Republic of China

~Received 19 November 2002; published 15 May 2003!

DNA sequences are represented as two-dimensional walkers based on groups of mapping rules for the
nucleotides in the DNA sequences. Digital sequences from irrational and random numbers in base 4 are
generated and their diffusion properties are then compared with those of 21 nucleotide sequences of animal and
plant viruses. By defining the diffusion coefficient as a function of the number of steps taken in a walk, we
show that the coefficients for the viral DNA sequences generally have maximum values considerably larger
than those for the random-number sequences of same lengths. Moreover, using the walker diagrams generated
by different mapping groups, we can study the dominance of any of the nucleotide pairs~AG or CT!, ~AC or
GT!, or ~AT or CG! in a DNA sequence. Other possible studies of this approach are mentioned.
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I. INTRODUCTION

Many statistical methods have been employed to ana
DNA sequences for their information content. The mo
common ones include the power spectral density@1–5#, the
correlation function@2,3,6,7#, the random-walker representa
tion @8–11#, and the mutual information function@12,13#.
Each of them may only serve a specified purpose of stu
For example, in the analysis of the power spectral densit
a particular nucleotide, one considers a mapping of assig
that nucleotide to ‘‘1’’ and others to ‘‘0’’ to obtain a sequenc
of binary digits, and analyzes the periodicities of the nuc
otide. In the one-dimensional DNA walk as introduced
Penget al. @8#, the pyrimidines and the purines in a DN
sequence are assigned for the walker to take a step
@u( i )511# if a pyrimidine is at positioni and a step down
@u( i )521# otherwise. Then the long-range correlations
nucleotide sequences may be studied.

Therefore, it is useful to consider a general approach
the analysis of nucleotide sequences. The two-dimensi
walks may provide a general approach for DNA studi
since the four types of nucleotides in DNA sequences
treated equally. In Sec. II, we shall introduce the mapp
rules for the two-dimensional walks. In Sec. III, we sh
give the diffusion properties of the character sequence
irrational and random numbers, and compare them w
those of the 21 nucleotide sequences of animal and p
viruses. Other possible studies based on the two-dimensi
walks will be mentioned.

II. THE TWO-DIMENSIONAL WALKS

We first define the two-dimensional walks according
Ref. @14#, in which the global fractal dimension of huma
DNA sequences was studied. Obviously, this approach
generalized version of the one-dimensional walk. We sh
first look at the diffusion properties of the digital sequenc
generated from the irrational and random numbers define
base 4. For example, the numberp in base 4 has the numer
cal value p453.021 003 331 222 . . . . For simplicity, only
the digits after the decimal point will be taken as the digi
sequence. Similarly, the digital sequences$u( i )% from the
1063-651X/2003/67~5!/051911~8!/$20.00 67 0519
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irrational numbersA2 and A3 can be generated, and
random-number sequence can be obtained from the rand
number generator of the softwareLABVIEW ~Table I!.
LABVIEW generates a string of random numbers$x( i )%
between 0 and 1 and the string is mapped onto a dig
sequence of the digits$0,1,2,3% depending on the values o
x( i ) in the intervals: $@0.00,0.25!,@0.25,0.50!,@0.50,0.75!,
@0.75,1.00!%, which are mapped onto the digits$0,1,2,3%.

For irrational and random numbers, each string$u( i )% is
mapped onto a character sequence$n( i )%, which is finally
mapped onto two binary strings$ux( i )% and $uy( i )% via a
mapping rule. In mapping from$u( i )% to $n( i )%, a digital
sequence, represented by a sequence of the four d
$u( i )%P$0,1,2,3%, is mapped onto the four types of nucle
otides or bases: adenine~A!, cytosine~C!, guanine~G!, and
thymine ~T! to form a character sequence$n( i )%. For ex-
ample, we may assignu( i )50 to be the nucleotide A,u( i )
51 to be the nucleotide C,u( i )52 to be the nucleotide G
andu( i )53 to be the nucleotide T. In this way, sequences
the four characters are generated and they resemble
nucleotide sequences of organisms.

Next, we define groups of mapping rules for the tw
dimensional walks~Tables II–IV!. These mapping rules cor
respond to translations from the sequence$n( i )% to $ux( i )%
and$uy( i )%. There are three independent groups of mapp
rules, such that in each group, there are four mapping r
that give rise to walker diagrams with reflection symmetr
about thex or y axis. For instance, the mapping rulea of
group 1@hereafter referred to as mapping rule 1(a)] is de-
fined as

TABLE I. Irrational and random numbers in base 4 and th
corresponding digital sequences.

Number in base 4 Digital sequenceu( i )

p423 02100333122220202011 . . .
A2421 12220021321212133303 . . .
A3421 23231213223220112010 . . .
Random-number sequence
from LABVIEW

22331013112303210333 . . .
©2003 The American Physical Society11-1
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T.-H. HSU AND S.-L. NYEO PHYSICAL REVIEW E67, 051911 ~2003!
A5~21,0!, T5~1,0!, C5~0,21!, G5~0,1!,

which means that the alphabets T and A denote walks on
x axis, while the alphabets G and C denote walks on thy
axis. Obviously, from Table II, the mapping ruleb generates
a walker diagram that is a reflection about thex axis of the
diagram with the mapping rulea. The mapping rulec gen-
erates a walker diagram that is a reflection about they axis of
the diagram with the mapping rulea; and the mapping ruled
generates a walker diagram that is a reflection about thy
axis of the diagram with the mapping ruleb. However, the
walker diagrams with different groups of mapping rules a
different @Figs. 1~a!–1~c!#. Clearly, the one-dimensiona
walk defined in Ref.@8# can be obtained by projecting th
two-dimensional walk onto the liney5x or y52x. For ex-
ample, a one-dimensional walk can be obtained by projec
a two-dimensional walk with the mapping rule 1(c) onto the
line y5x.

To study the diffusion properties of a two-dimension
walk, we define the position of the walker. Afterj steps, the
position isr ( j )5„x( j ),y( j )…, where the components of th
position read

x~ j ![(
i 51

j

ux~ i !, y~ j ![(
i 51

j

uy~ i !.

For the purpose of comparing different sequences, we de
the two-dimensional diffusion coefficient for a walk by@15#

D~n!5
^r 2&
4n

, ~1!

where the averagêr 2& is defined as the average of all ther 2

terms starting from the first step to thenth step along the
sequence

^r 2&5
1

n (
j 51

n

r 2~ j !5
1

n (
j 51

n

@x2~ j !1y2~ j !#, ~2!

TABLE III. Group 2 mapping rules.

a b c d

n( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i )
A 21 0 21 0 1 0 1 0
C 1 0 1 0 21 0 21 0
G 0 21 0 1 0 21 0 1
T 0 1 0 21 0 1 0 21

TABLE II. Group 1 mapping rules.

a b c d

n( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i )
A 21 0 21 0 1 0 1 0
C 0 21 0 1 0 21 0 1
G 0 1 0 21 0 1 0 21
T 1 0 1 0 21 0 21 0
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with n denoting the number of steps such that 1< j <n<,
for a total number of steps or nucleotides, in the DNA
sequence. Thus, the diffusion coefficient is a function of
number of stepsn. Also, we note that since the walker dia
grams with the mapping rules of a group are reflections
one another, the diffusion coefficients for the diagrams in
group are the same.

TABLE IV. Group 3 mapping rules.

a b c d

n( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i ) ux( i ) uy( i )
A 21 0 21 0 1 0 1 0
C 0 21 0 1 0 21 0 1
G 1 0 1 0 21 0 21 0
T 0 1 0 21 0 1 0 21

TABLE V. The animal~A! and plant~P! viruses and their ac-
cession numbers@16#.

Organism Type
Accession
number

Total
bases~bp!

Reston Ebola virus A NC_004161 18891
Zaire Ebola virus A NC_002549 18959
Foot-and-mouth
disease virusC

A NC_002554 8115

Foot-and-mouth
disease virusO

A NC_004004 8134

Human herpes virus 1 A NC_001806 152261
Human herpes virus 2 A NC_001798 154746
Human immunodeficiency
virus type 1

A NC_001802 9181

Human immunodeficiency
virus type 2

A NC_001722 10359

Mumps virus A NC_002200 15384
Beet yellows virus P NC_001598 15480
Cauliflower mosaic
virus

P NC_001497 8024

Cucumber mosaic
virus RNA 1

P NC_002034 3357

Cucumber mosaic
virus RNA 2

P NC_002035 3050

Cucumber mosaic
virus RNA 3

P NC_001440 2216

Cucumber mosaic
virus satellite RNA

P NC_002602 336

Satellite tobacco
mosaic virus

P NC_003796 1058

Tobacco mild green
mosaic virus

P NC_001556 6355

Tobacco mosaic virus P NC_001367 6395
Tobacco necrosis
satellite virus

P NC_001557 1239

Tobacco necrosis
virus A

P NC_001777 3684

Tobacco necrosis
virus D

P NC_003487 3762
1-2
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FIG. 1. Two-dimensional walker diagrams for theLABVIEW random numbers based on the mapping rules:~a! 1~a!, ~b! 2~a!, and~c! 3~a!.
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For the nucleotide sequences, we shall consider sev
animal and plant viruses~Ref. @16#!, with the accession num
bers listed in Table V. We shall compare the viral data w
p, A2,A3, and the random numbers fromLABVIEW .

In our study, we find it useful to analyze not only th
nucleotide sequences with their nucleotides in the origin
listed form, which we shall refer to as the normal sequenc
but also sequences with their nucleotides in the reversed
der with respect to the normal sequences.

We observe that the complementary structure of a dou
stranded DNA can be reflected only by the mapping rules
group 1. Consider, for example, the sequence8
2AAATGGCCCC238, and apply the mapping rule 1~a! to
it, we have

ux :2,21,21,21,1,0,0,0,0,0,0,2;

FIG. 2. Diffusion coefficients for theLABVIEW random numbers
based on the mapping rules 1~a!, 2~a!, and 3~a!.
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uy :2,0,0,0,0,1,1,21,21,21,21,2.

The reversed sequence of 582AAATGGCCCC238 is 38
2CCCCGGTAAA258. Use of the mapping rule 1~d! for
the reversed sequence results

ux :2,0,0,0,0,0,0,21,1,1,1,2;

uy :2,1,1,1,1,21,21,0,0,0,0,2.

The complementary sequence of the normal sequence8
2AAATGGCCCC238 is 582GGGGCCATTT238, and
the mapping rule 1~a! for 582GGGGCCATTT238 gives

ux :2,0,0,0,0,0,0,21,1,1,1,2;

uy :2,1,1,1,1,21,21,0,0,0,0,2.

Thus, we see that the walker diagram for the reversed
quence using mapping rule 1~d! is the same as for the norma
sequence on the complementary sequence using map
rule 1~a!. A similar analysis shows that the mapping rul
1~b! and 1~c! enjoy the same property.

Further, since the mapping rules within a group give t
same diffusion coefficient, the group 1 mapping rules lead

TABLE VI. The maximum values of the diffusion coefficient
for the irrational and random numbers in the three mapping grou

Number

Normal sequence

Group 1 Group 2 Group 3
Total
length

p423 0.60 0.59 0.25 100000
A2421 0.32 0.29 0.28 100000
A3421 0.26 0.39 0.33 100000
Random-number
sequence from
LABVIEW

0.36 0.31 0.42 100000
1-3
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TABLE VII. The maximum values of the diffusion coefficients for the animal and plant viruses in
normal and reversed sequences in the three groups of mappings.

Normal sequence Reversed sequence

Organism Group 1 Group 2 Group 3 Group 1 Group 2 Group

Reston Ebola virus 2.98 22.95 24.63 1.60 33.14 34.0
Zaire Ebola virus 5.46 20.50 23.27 3.39 32.23 34.37
Foot-and-mouth disease virusC 1.81 2.60 4.33 1.47 2.08 3.35
Foot-and-mouth disease virusO 2.09 4.63 6.56 2.03 3.60 4.95
Human herpes virus 1 7.35 785.83 784.74 22.24 892.32 892.
Human herpes virus 2 2.43 1012.82 1012.03 8.73 1109.98 1109
Human immunodeficiency virus type 1 20.12 28.61 14.44 15.10 23.62 11.
Human immunodeficiency virus type 2 20.77 19.96 8.09 15.32 15.99 7.0
Mumps virus 3.25 12.40 14.17 1.78 18.90 20.42
Beet yellows virus 3.31 3.71 4.85 2.15 5.82 7.85
Cauliflower mosaic virus 13.86 22.65 24.54 11.53 15.16 17.3
Cucumber mosaic virus RNA1 0.47 0.77 1.12 0.56 0.83 1.38
Cucumber mosaic virus RNA2 0.67 1.59 1.59 0.36 1.15 1.35
Cucumber mosaic virus RNA3 0.84 0.79 1.07 0.49 0.47 0.33
Cucumber mosaic virus satellite RNA 0.70 0.31 0.75 0.39 0.39 0.3
Satellite tobacco mosaic virus 0.46 0.39 0.60 0.28 0.27 0.4
Tobacco mild green mosaic virus 1.96 10.14 8.94 2.38 10.37 9.4
Tobacco mosaic virus 1.23 5.47 4.83 2.05 6.70 5.86
Tobacco necrosis satellite virus 1.16 0.88 0.92 0.47 0.47 0.4
Tobacco necrosis virusA 0.93 0.88 0.62 0.84 0.64 0.72
Tobacco necrosis virusD 0.57 0.95 0.60 0.46 0.92 0.70
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the same diffusion coefficient for the reversed sequence
normal sequence and for the complementary sequence o
normal sequence.

III. DIFFUSION ANALYSIS AND CONCLUSION

First, we observe that from the two-dimensional walk
diagrams, it is possible to classify the nucleotide sequen
of viruses into three types according to the diffusion coe
cients. In particular, the nucleotide sequences of viruses
erally have larger maximum values of the diffusion coe
cients than those of the irrational or random numbers.
long sequences, this approach can be used to indicate
abundance of certain nucleotides in the sequences; bu
short sequences, say less than 5000, it is difficult to dis
guish a nucleotide sequence from a random-number
quence.

In Fig. 2, the diffusion coefficients for theLABVIEW

random-number sequence based on the mapping rulea of the
three groups are plotted. We note that the maximum va
of the coefficients are less than 0.5~Table VI!. For the se-
quences of the irrational numbers considered, the coeffici
have maximum values of about 0.6. On the other hand,
maximum values of the coefficients for the nucleotide
quences can generally be quite large~Table VII!, depending
on the lengths of the sequences, and range from less than
over 1000. Moreover, the maximum values depend also
the mapping rules.

From our analysis, we can divide the walker diagrams
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the sequences into three types. A walker diagram of type
the one that has a diffusion coefficient behaving like a m
notonously increasing function with no obvious peaks b
tween the initial and final positions, and the maximum va
appears at the final position of a walk. A walker diagram
type II has a maximum value of the coefficient that occu
between the initial and final positions. While that of type
has a maximum value of the coefficient at the final posit
and there is at least one peak between the initial and fi
positions. From the 21 DNA data, we see no typical incre
in diffusion coefficient of a viral DNA walk. But in general
when a two-dimensional walker follows on the average
straight path, its diffusion coefficient diagram will be of typ
I. The diffusion types of the sequences are listed in Tab
VIII and IX.

TABLE VIII. The diffusion types for the irrational and random
numbers in the three groups of mappings.

Diffusion type

Number Group 1 Group 2 Group 3
Total
length

p423 II II II 100000
A2421 II II II 100000
A3421 II II II 100000
Random-number II II II 10000
sequence from
LABVIEW
1-4
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TABLE IX. The diffusion types for the animal and plant viruses in the normal and reversed sequen
the three groups of mapping rules.

Normal sequence Reverse sequence

Organism Group 1 Group 2 Group 3 Group 1 Group 2 Group

Reston Ebola virus II I I III I I
Zaire Ebola virus III I I III I I
Foot-and-mouth disease virusC III III III III III III
Foot-and-mouth disease virusO III III I III III III
Human herpes virus 1 II I I II I I
Human herpes virus 2 II I I II I I
Human immunodeficiency virus type 1 I I I I I III
Human immunodeficiency virus type 2 III III III I I I
Mumps virus III III I III I I
Beet yellows virus II III III III I I
Cauliflower mosaic virus I I I I I I
Cucumber mosaic virus RNA1 II III III III III III
Cucumber mosaic virus RNA2 II III III II III III
Cucumber mosaic virus RNA3 III III II III III III
Cucumber mosaic virus satellite RNA II II II II II II
Satellite tobacco mosaic virus II III II II III III
Tobacco mosaic green mosaic virus III III III III III III
Tobacco mosaic virus III III III III III III
Tobacco necrosis satellite virus II II II II II II
Tobacco necrosis virusA III II III III II II
Tobacco necrosis virusD III II III III III III

TABLE X. The fractions of A, C, G, and T in the DNA sequences of animal and plant viruses.

Nucleotide

Organism A C G T

Reston Ebola virus 0.3143 0.2080 0.1983 0.2794
Zaire Ebola virus 0.3197 0.2128 0.1979 0.2696
Foot-and-mouth disease virusC 0.2476 0.2849 0.2559 0.2116
Foot-and-mouth disease virusO 0.2454 0.2908 0.2620 0.2019
Human herpes virus 1 0.1592 0.3380 0.3449 0.1580
Human herpes virus 2 0.1487 0.3504 0.3535 0.1475
Human immunodeficiency virus type 1 0.3564 0.1788 0.2423 0.222
Human immunodeficiency virus type 2 0.3384 0.2058 0.2508 0.204
Mumps virus 0.3074 0.2077 0.2042 0.2677
Beet yellows virus 0.2514 0.2226 0.2377 0.2883
Cauliflower mosaic virus 0.3671 0.2055 0.1942 0.2332
Cucumber mosaic virus RNA1 0.2514 0.2216 0.2431 0.2839
Cucumber mosaic virus RNA2 0.2525 0.2249 0.2315 0.2911
Cucumber mosaic virus RNA3 0.2333 0.2369 0.2383 0.2915
Cucumber mosaic virus satellite RNA 0.1964 0.2411 0.2857 0.276
Satellite tobacco mosaic virus 0.2599 0.2146 0.2439 0.2817
Tobacco mild green mosaic virus 0.3042 0.1750 0.2343 0.286
Tobacco mosaic virus 0.2912 0.1912 0.2416 0.2760
Tobacco necrosis satellite virus 0.2793 0.2276 0.2462 0.247
Tobacco necrosis virusA 0.2815 0.2443 0.2446 0.2296
Tobacco necrosis virusD 0.2677 0.2196 0.2525 0.2600
051911-5



se
s

th
he

o
ec
le
pi

a
cl
e
a
a
-

a

o

up
in
th
rg
up
e
g
up
c

nc
nt
no
a
n

ts

ses

de-
ate
ap-
ical
ing
ts.
ith
tent
red

tion
ive

ight-

ts
ules
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We note that the walker diagrams of the reversed
quences are just the rotated diagrams of the normal
quences, with rotation angle 180°. The final positions of
walker diagrams of both sequences are identical, but t
diffusion coefficients are not~cf. Table VII!. The reason is
that the final position of a walker diagram depends only
the numbers of the four nucleotides, which dictate the dir
tions of the walking steps, and not on the order of the nuc
otides in the sequence. For instance, consider the map
rule 1~a! for a sequence of$nA ,nT ,nC ,nG% of the nucle-
otides $A, T, C, G%. The final position is then given by
„x(,),y(,)…5(nT2nA ,nG2nC), where ,5nA1nT1nC
1nG . However, the diffusion coefficient defined by Eq.~1!
depends on how the nucleotides are ordered.

Moreover, the two-dimensional diffusion walks provide
very useful approach for the study of the abundance of nu
otides in DNA sequences. If the diffusion coefficient is larg
then the two-dimensional walker diagram is most likely
straight line, and there are several possible situations for e
mapping group.~1! Group 1 mapping rules: the DNA se
quence has more fraction of either~AG or CT! or ~AC or
GT!. ~2! Group 2 mapping rules: the DNA sequence h
more fraction of either~AG or CT! or ~AT or CG!. ~3! Group
3 mapping rules: the DNA sequence has more fraction
either ~AC or GT! or ~AT or CG!.

Thus, when the diffusion coefficients are large with gro
2 and group 3 mapping rules but not with group 1 mapp
rules, we may conclude that there are more AT or CG in
DNA sequence. When the diffusion coefficients are la
with group 3 and group 1 mapping rules but not with gro
2 mapping rules, there are more AC or GT in the DNA s
quence. Finally, when the diffusion coefficients are lar
with group 1 and group 2 mapping rules but not with gro
3 mapping rules, there are more AG or CT in the sequen
Hence, we may say that there is a large fractional differe
between pyrimidines and purines if the diffusion coefficie
are large with group 1 and group 2 mapping rules but
with group 3 mapping rules. This is clearly seen by comp
ing Tables VII and X. To see how the maximum diffusio
coefficient depends, for example, on the CG content~in %!,
we plot the logarithm of the maximum diffusion coefficien
05191
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based on group 2 and group 3 mapping rules for the viru
with their CG contents~Fig. 3!. The maximum diffusion co-
efficients are seen to obey an approximate exponential
caying law with CG contents up to 50% and an approxim
exponential increasing law for larger CG contents. There
pears a reflection symmetry in the laws about the vert
line at CG content of 50%. The groups 2 and 3 mapp
rules give about the same maximum diffusion coefficien
We note that to produce a straight-line walker diagram w
groups 2 and 3 mapping rules, we require a high CG con
in the sequence. In addition, how the nucleotides are orde
in the sequence is a crucial factor. For example, a repeti
of several nucleotides of one type in a sequence would g
a directed path along one of the axes and break the stra
line path.

FIG. 3. Plot of the logarithm of maximum diffusion coefficien
with the CG contents based on group 2 and group 3 mapping r
for the viruses.
FIG. 4. Two-dimensional walker diagrams for the human herpes virus 2 based on the mapping rules:~a! 1~a!, ~b! 2~a!, and~c! 3~a!.
1-6
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FIG. 5. The diffusion coefficients for the hu
man herpes virus 2 based on the mapping rul
~a! 1~a!, and~b! 2~a!. Note that the coefficient in
~b! given in the linear scales shows a linear d
pendence onn and no peaks appear between t
initial and final positions of the walker.

FIG. 6. Two-dimensional walker diagrams for the mumps virus based on the mapping rules:~a! 1~a!, ~b! 2~a!, and~c! 3~a!.

FIG. 7. Two-dimensional walker diagrams for the beet yellows virus based on the mapping rules:~a! 1~a!, ~b! 2~a!, and~c! 3~a!.
051911-7
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The smallest maximum diffusion coefficient appears to
associated with the mapping group 1, with the exception
the tobacco necrosis virusA, human immunodeficiency viru
types 1 and 2, which have the smallest maximum diffus
coefficients with the mapping group 3. Other exceptions
the Cucumber mosaic virus RNA3, Cucumber mosaic vi
satellite RNA, satellite tobacco mosaic virus, and toba
necrosis satellite virus whose smallest maximum diffus
coefficients are given by the mapping group 2.

As an example, consider the human herpes virus 2, it
large maximum values of diffusion coefficients with grou
2 and 3. Thus, the DNA sequence is rich in either AT or C
A more detailed analysis shows that the sequence has
fractions of C and G, which make the trajectory of its tw
dimensional walks to be very close to an oblique line~Fig.
4!. In this case, the diffusion coefficients with mappin
groups 2 and 3 are monotonously increasing functions
not with mapping group 1~Fig. 5!. Specifically, Fig. 5~b!
shows that the human herpes virus 2 with the mapping

FIG. 8. Diffusion coefficients for~a! the mumps virus and~b!
the beet yellows virus based on the mapping rules 1~a!, 2~a!, and
3~a!.
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2~a! has a linear dependence onn. From Table X, C and G
are notably more than A and T.

We next note that although the nucleotide sequence
the mumps and beet yellows viruses are about of the s
length, the fractions of A, C, G, and T in their sequences
different. Consider the fractions of the nucleotides C and
in the sequences of these viruses in Table X. In the b
yellows virus, the fractions of C and G are 0.2226 a
0.2377, respectively, while in the mumps virus, they a
0.2077 and 0.2042, respectively. The relative difference
tween the nucleotides A and C and that between A and G
the beet yellows virus are smaller than those in the mum
virus. Also, the two-dimensional trajectories based on
mapping groups 2 and 3 for the mumps virus behave m
linearly than those of the beet yellows virus@Figs. 6~a!–6~c!
and 7~a!–7~c!#. Consequently, the maximum values of th
diffusion coefficients for the mumps virus are larger th
those of the beet yellows virus~Table VII!. The diffusion
coefficients based on the mapping rule~a! of the three
groups are plotted in Figs. 8~a! and 8~b!, with the corre-
sponding types given in Table IX. From Figs. 6–8 and Ta
IX, we see no simple rule for determining the diffusion typ
from the walker diagrams.

Finally, we should mention that there are many stud
that can be made with the two-dimensional walks. For
stance, the DNA sequences of bacteria and human DNA
quences may be considered. Also a study of the poss
connection of the two-dimensional mapping rules with t
three-dimensional ones@17–19# should be of some interes
The scaling properties of the walks in two and three dim
sions, which may be treated as polymers, can be analy
Of course, the implications of such studies remain to be se
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